Part I
Selected Response
Total Value: 40\%

Item	Answer	Item	Answer
1	C	21	D
2	C	22	B
3	A	23	C
4	C	24	D
5	D	25	C
6	C	26	B
7	C	27	C
8	D	28	B
9	B	29	B
10	C	30	A
11	D	31	D
12	C	32	D
13	B	33	C
14	A	34	B
15	C	35	C
16	B	36	D
17	C	37	A
18	D	38	C
19	B	39	B
20	D	40	A

Part II

Constructed Response

Total Value: 60\%

Answer ALL questions in the space provided. Show all workings and report all final answers with correct significant digits and units.

Value

6 41. a) The motion of an object is shown on the velocity-time graph below.

(i) What is the velocity of the object at $\mathrm{t}=1 \mathrm{~s}$?

$$
\vec{v}=0 \mathrm{~m} / \mathrm{s} \quad(1 \mathrm{mark})
$$

(ii) What is the magnitude of the acceleration of the object at $t=4 \mathrm{~s}$?

$$
\begin{aligned}
& \text { Acceleration }=\text { slope } \\
& \text { slope }=\frac{1 m / s}{2 s}=0.5 \frac{m}{s^{2}}
\end{aligned}
$$

(iii) What is the displacement of the object between $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$?

$$
\begin{gathered}
d_{0-1 s}=\frac{1}{2} b \times h=\frac{1}{2}(1)(1)=0.5 m \quad(0.5 \text { marks }) \\
d_{1-2 s}=\frac{1}{2} b \times h=\frac{1}{2}(1)(-1)=-0.5 m \quad(0.5 \text { marks }) \\
d_{2-3 s}=b \times h=(1)(-1)=-1 m \quad(0.5 \text { marks }) \\
d_{3-5 s}=\frac{1}{2} b \times h=\frac{1}{2}(2)(-1)=-1 m \quad(0.5 \text { marks }) \\
d_{\text {Total }}=-2 m \quad(0.5 \text { marks })
\end{gathered}
$$

(0.5 marks) for knowing that area=displacement
b) An aircraft can fly at $275 \mathrm{~km} / \mathrm{hr}$ in still air. The wind is blowing towards the east at $65 \mathrm{~km} / \mathrm{hr}$. If the aircraft flies towards the north, calculate the resulting velocity of the aircraft relative to the ground. Your answer should include a vector diagram.

$$
\begin{aligned}
& \text { (1 mark) } \\
& v_{R}{ }^{2}=v_{P}^{2}+v_{W}^{2} \\
& v_{R}=\sqrt{(275)^{2}+(65)^{2}} \quad \text { (1 mark) } \\
& v_{R}=283 \mathrm{~km} / \mathrm{h} \\
& \tan \theta=\frac{v_{W}}{v_{P}} \\
& \theta=\tan ^{-1}\left(\frac{65}{275}\right) \quad \text { (1 mark) } \\
& \theta=13^{\circ} \\
& \therefore v_{R}=283 \mathrm{~km} / \mathrm{h}\left[N 13^{\circ} \mathrm{E}\right] \quad \text { (1 mark) }
\end{aligned}
$$

c) A 65 kg skater is gliding along the ice at a constant speed of $4.00 \mathrm{~m} / \mathrm{s}$ when he hits a rough patch. The coefficient of kinetic friction between the rough ice and the skate blades is 0.10 . Calculate how far the skater will travel on the rough ice before stopping.
$F_{\text {netx }}=-F_{f r} \quad$ (1mark)
$m a=-u_{k} m g \quad$ (0.5marks)
$a=-u_{k} g$
$a=-(0.10)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$
$a=-0.98 m / s^{2} \quad(0.5 \mathrm{marks})$
Then,
$v_{1}=4.00 \mathrm{~m} / \mathrm{s}$
$a=-0.98 m / s^{2}$
$v_{2}=0 \mathrm{~m} / \mathrm{s} \quad(0.5 \mathrm{marks})$
$d=$?
$d=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}=\frac{0-(4.00 m / s)^{2}}{2\left(-0.98 m / s^{2}\right)}=8.2 m \quad$ (1.5marks)

$$
\begin{aligned}
F_{x}= & F \cos \theta \\
F_{x}= & (2400 N) \cos \left(18^{\circ}\right) \quad(0.5 \text { marks }) \\
F_{x}= & 2283 \mathrm{~N} \\
& F_{\text {Net }}=m a \\
& F_{x}-F_{f}=m a \quad(1 \mathrm{mark})
\end{aligned}
$$

$$
\begin{align*}
& 2283 \mathrm{~N}-900.0 \mathrm{~N}=(2000 \mathrm{~kg}) a \tag{1mark}\\
& 1383 \mathrm{~N}=(2000 \mathrm{~kg}) a
\end{align*}
$$

$$
\therefore a=0.69 \mathrm{~m} / \mathrm{s}^{2} \quad(0.5 \mathrm{marks})
$$

b) A 2.0 kg block and a 5.0 kg block are connected by a rope over a frictionless pulley as shown.

(i) Calculate the magnitude of the acceleration of the system of blocks.

$$
\begin{aligned}
& a=\frac{W_{5.0}-W_{2.0}}{m_{\text {total }}} \quad(0.5 \mathrm{marks}) \\
& a=\frac{(5.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-(2.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2.0 \mathrm{~kg}+5.0 \mathrm{~kg}} \quad(1.5 \mathrm{marks}) \\
& a=\frac{29.4 \mathrm{~N}}{7.0 \mathrm{~kg}}=4.2 \mathrm{~m} / \mathrm{s}^{2} \quad(1 \mathrm{mark})
\end{aligned}
$$

(ii) Calculate the magnitude of the tension in the connecting rope.

For 2.0 kg block,

$$
\begin{aligned}
& T-m g=F_{\text {net }} \\
& T=m g+F_{\text {net }} \quad(1 \mathrm{mark}) \\
& T=m g+m a \\
& T=(2.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+(2.0 \mathrm{~kg})\left(4.2 \mathrm{~m} / \mathrm{s}^{2}\right) \quad(0.5 \mathrm{marks}) \\
& T=28 \mathrm{~N} \quad(0.5 \mathrm{marks})
\end{aligned}
$$

Or,
For 5.0 kg block,
$T-m g=-F_{\text {net }}$
$T=m g-F_{\text {net }} \quad$ (1mark)
$T=m g-m a$
$T=(5.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-(5.0 \mathrm{~kg})\left(4.2 \mathrm{~m} / \mathrm{s}^{2}\right) \quad(0.5 \mathrm{marks})$
$T=28 N \quad$ (0.5 marks)
c) Two pool balls each having a mass of 0.750 kg are approaching each other as shown. Ball 1 is initially traveling at $1.50 \mathrm{~m} / \mathrm{s}$ to the right while ball 2 is traveling at $0.500 \mathrm{~m} / \mathrm{s}$ to the left. After the collision, ball 1 is traveling to the right at a speed of $0.35 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of ball 2 after the collision.

$$
\begin{gathered}
p=p^{\prime} \\
m_{1} v_{1}+m_{2} v_{2}=m_{1}^{\prime} v_{1}^{\prime}+m_{2}^{\prime} v_{2}^{\prime} \quad(1 \mathrm{mark})
\end{gathered}
$$

$(0.750 \mathrm{~kg})(1.50 \mathrm{~m} / \mathrm{s})+(0.750 \mathrm{~kg})(-0.500 \mathrm{~m} / \mathrm{s})=(0.750 \mathrm{~kg})(0.35 \mathrm{~m} / \mathrm{s})+(0.750 \mathrm{~kg}) \nu_{2}{ }^{\prime}$ (2 marks)

$$
\begin{aligned}
& 0.75=0.263+(0.750) v_{2}^{\prime} \quad(0.5 \mathrm{marks} \\
& 0.487=(0.750) v_{2}^{\prime} \\
& \therefore v_{2}^{\prime}=0.65 \mathrm{~m} / \mathrm{s} \text { (right) } \quad(0.5 \text { marks })
\end{aligned}
$$

d) A mass is attached to a cart as shown, and an experiment is performed to determine the relationship between force, mass and acceleration. For each trial, a mass is taken off the cart and attached to the hanging mass, keeping the total mass of the system constant. A graph of Applied Force vs. Acceleration for this experiment is shown below.

Applied Force vs. Acceleration

(i) Calculate the total mass of the system.

$$
\begin{aligned}
& \text { Slope }=\frac{F}{a}=\text { total mass } \quad(1 \mathrm{mark}) \\
& \frac{\text { rise }}{\text { run }}=\frac{450-50}{40-0}=10 \mathrm{~kg} \quad(1 \mathrm{mark})
\end{aligned}
$$

(ii) Determine the frictional force acting on the system.

$$
\begin{gather*}
F_{\text {Net }}=m a \\
F_{\text {Applied }}-F_{f}=m_{T} a \tag{1mark}\\
F_{\text {Applied }}=m_{T} a+F_{f} \\
y=m x+b
\end{gather*}
$$

Frictional Force $=y$-intercept $=50 \mathrm{~N} \quad(1$ mark $)$
43. a) A force of 85 N is applied to a lawn mower at an angle of 60.0° above the horizontal. Calculate the distance the mower must be pushed to do 2000.0 J of work.

$$
\begin{array}{cc}
W=F d \cos \theta & (0.5 \text { marks }) \\
2000.0 J=(85 N) d \cos (60.0) \quad(1 \text { mark })
\end{array}
$$

$$
\begin{gathered}
\frac{2000.0 J}{(85 N) \cos (60.0)}=d \quad(1 \mathrm{mark}) \\
d=47 \mathrm{~m} \quad(0.5 \mathrm{marks})
\end{gathered}
$$

b) A $2.0 \times 10^{3} \mathrm{~W}$ winch is used to raise a 1200 kg car vertically from a ditch. Calculate how high the car is raised if the winch operates for 72 s .

$$
\begin{gathered}
P=\frac{W}{t} \quad(0.5 \text { marks }) \\
P=\frac{m g d}{t}(1 \mathrm{marks}) \\
2000 W=\frac{(1200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) d}{72 s} \quad(1 \mathrm{mark}) \\
d=12 m \quad(0.5 \mathrm{marks})
\end{gathered}
$$

c) A 0.500 kg cart is released from rest at the top of a ramp and allowed to roll down the ramp and across a level floor as shown. Data are collected and plotted on the velocity vs. time graph below. Calculate the original height, h, of the ramp.

Velocity at bottom of ramp $=$ highest velocity $=2 \mathrm{~m} / \mathrm{s}($ read from graph) (1 mark)

$$
\begin{gathered}
E_{k_{\text {Bot }}}=\frac{1}{2} m v^{2} \quad(0.5 \text { marks }) \\
E_{k_{\text {Bot }}}=\frac{1}{2}(0.500 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})^{2} \quad(0.5 \text { marks }) \\
E_{k_{\text {Bot }}}=1 J \quad(0.5 \text { marks }) \\
E_{k_{\text {Bot }}}=E_{g_{\text {Top }}} \quad(0.5 \text { marks }) \\
1 J=m g h \quad(0.5 \text { marks }) \\
1 J=\left(\begin{array}{ll}
0.500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) h \\
h=0.2 \mathrm{~m} \quad(0.5 \mathrm{marks})
\end{array}\right.
\end{gathered}
$$

d) A spring with a spring constant of $350 \mathrm{~N} / \mathrm{m}$ is compressed a certain distance by a 3.0 kg mass. If the maximum speed of the mass after it is released is $2.0 \mathrm{~m} / \mathrm{s}$, calculate the distance the spring was compressed.

$$
\begin{aligned}
& E_{e}=E_{k} \quad(1 \text { mark }) \\
& \frac{k x^{2}}{2}=\frac{m v^{2}}{2} \quad(1 \mathrm{mark}) \\
& k x^{2}=m v^{2} \\
& x^{2}=\frac{m v^{2}}{k} \quad(1 \mathrm{mark}) \\
& x=\sqrt{\frac{(3.0 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})^{2}}{350 \mathrm{~N} / \mathrm{m}}} \\
& x=0.19 m \quad(1 \mathrm{mark})
\end{aligned}
$$

44. a) An air mattress floating on a lake bobs up and down 45 times in 5.0 minutes. Calculate the speed of the water waves produced if the distance between their crests is 4.0 m .

$$
\begin{aligned}
& f=\frac{\# \text { cycles }}{\text { time }}=\frac{45}{300}=0.15 \mathrm{~Hz} \quad(1.5 \text { marks }) \\
& v=\lambda f=(4.0 \mathrm{~m})(0.15 \mathrm{~Hz}) \quad(1 \mathrm{mark}) \\
& \quad v=0.60 \mathrm{~m} / \mathrm{s} \quad(0.5 \mathrm{marks})
\end{aligned}
$$

b) A single slit of width $1.0 \times 10^{-5} \mathrm{~m}$ is illuminated by light of wavelength $6.21 \times 10^{-7} \mathrm{~m}$. Calculate the angle at which the second order minimum occurs.

$$
\begin{aligned}
& n \lambda=w \sin \theta_{n} \\
& \sin \theta_{n}=\frac{n \lambda}{w} \quad(0.5 \mathrm{marks}) \\
& \sin \theta_{2}=\frac{(2)\left(6.21 \times 10^{-7} \mathrm{~m}\right)}{1.0 \times 10^{-5} \mathrm{~m}} \quad(0.5 \mathrm{marks}) \\
& \sin \theta_{2}=0.1242 \quad(0.5 \mathrm{marks}) \\
& \theta_{2}=7.1^{\circ} \quad(0.5 \text { marks })
\end{aligned}
$$

c) A police car has a speed trap set up on the highway. The radar gun emits a frequency of $9.0 \times 10^{9} \mathrm{~Hz}$ and detects waves differing by $1.4 \times 10^{3} \mathrm{~Hz}$.
Calculate whether the driver of this car will get a speeding ticket if the speed limit is $1.0 \times 10^{2} \mathrm{~km} / \mathrm{h}$.

$$
\begin{aligned}
& v_{r}=\left(\frac{\Delta f}{2 f_{1}}\right) c \\
& v_{r}=\frac{1.4 \times 10^{3} \mathrm{~Hz}}{2\left(9.0 \times 10^{9} \mathrm{~Hz}\right)} \times 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad(1 \mathrm{mark}) \\
& v_{r}=23 \mathrm{~m} / \mathrm{s} \quad(0.5 \text { marks }) \\
& v_{r}=23 \mathrm{~m} / \mathrm{s}(3.6)=84 \mathrm{~km} / \mathrm{h} \quad(0.5 \text { marks })
\end{aligned}
$$

Since this is below the speed limit, the driver would not get a ticket. (1 mark)
d) The index of refraction for diamond is 2.42 .
(i) If light travels from air into diamond, calculate the speed of light in diamond.

$$
\begin{gathered}
n=\frac{c}{v} \quad(0.5 \mathrm{marks}) \\
2.42=\frac{3.00 \times 10^{8}}{v} \quad(0.5 \mathrm{marks}) \\
v=\frac{3.00 \times 10^{8}}{2.42}=1.24 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad(1 \text { mark })
\end{gathered}
$$

(ii) Calculate the critical angle for diamond in air.

$$
\begin{gathered}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad(0.5 \text { marks }) \\
(2.42) \sin \theta_{C}=(1.00) \sin (90) \quad(0.5 \text { marks }) \\
\theta_{C}=\sin ^{-1}\left(\frac{1.00}{2.42}\right) \quad(0.5 \text { marks }) \\
\theta_{C}=24.4^{0} \quad(0.5 \text { marks })
\end{gathered}
$$

4 e) A standing wave pattern containing three antinodes is produced on a 6.0 m rope.
(i) Sketch the standing wave pattern produced.

(ii) Calculate the speed of the wave if the frequency of its source is 5.5 Hz .

$$
\begin{aligned}
& 6.0 m=1.5 \lambda \quad(1 \text { mark }) \\
& \lambda=\frac{6.0}{1.5}=4.0 m \quad(0.5 \text { marks }) \\
& v=f \lambda=(5.5 \mathrm{~Hz})(4.0 \mathrm{~m}) \quad(1 \text { mark }) \\
& v=22 \mathrm{~m} / \mathrm{s} \quad(0.5 \text { marks })
\end{aligned}
$$

