Physics 2204 Common Exam

Answer Section

OBJ: 325-5
2. ANS: A OBJ: 325-2
3. ANS: A OBJ: 325-2
4. ANS: B OBJ: 325-2
5. ANS: A OBJ: 325-7
6. ANS: D OBJ: 325-5; 325-2
7. ANS: C OBJ: 325-2
8. ANS: B PTS: 1 OBJ: 325-2
9. ANS: A OBJ: 325-2
10. ANS: D OBJ: 325-8
11. ANS: B OBJ: 325-5
12. ANS: A PTS: 1 OBJ: 325-5
13. ANS: D PTS: 1 OBJ: 325-8
14. ANS: B OBJ: 325-8
15. ANS: A OBJ: 325-8
16. ANS: B OBJ: 325-8
17. ANS: C OBJ: 325-8
18. ANS: B OBJ: 326-3
19. ANS: C OBJ: 326-3
20. ANS: B OBJ: 212-3;213-2
21. ANS: B OBJ: 326-1
22. ANS: A PTS: 1 OBJ: 325-9
23. ANS: C OBJ: 212-3
24. ANS: D PTS: 1 OBJ: 325-9
25. ANS: C PTS: 1 OBJ: 325-9
26. ANS: C PTS: 1 OBJ: 325-9
27. ANS: C OBJ: 326-1
28. ANS: C PTS: 1 OBJ: 325-9
29. ANS: C PTS: 1 OBJ: 326-1
30. ANS: A PTS: 1 OBJ: 212-7 and 327-1
31. ANS: A PTS: 1 OBJ: 212-7 and 327-1

| DIF: L1 | REF: $\operatorname{Pg} 24$ |
| :--- | :--- | :--- |
| DIF: L1 | REF: $\operatorname{Pg} 26$ |
| DIF: L2 | REF: $\operatorname{Pg} 26$ |
| DIF: L2 | REF: $\operatorname{Pg} 26$ |
| DIF: L1 | REF: $\operatorname{Pg} 34$ |

DIF: L3 REF: Pg 24; Pg 28
DIF: L1 REF: Pg 24
DIF: L2 REF: Pg 28
DIF: L2 REF: Pg 28
DIF: L1 REF: Pg 44
DIF: L2 REF: Pg 42
DIF: L2 REF: Pg 42
DIF: L1 REF: Pg 44
DIF: L3 REF: Pg 46

DIF: L1 REF: Pg 44
DIF: L2 REF: Pg 48
DIF: L2 REF: Pg 46
DIF: L1 REF: Pg 52
DIF: L2 REF: Pg 52
DIF: L2 REF: Pg 50
DIF: L1 REF: p. 60
DIF: L1 REF: p. 58
DIF: L1 REF: p. 66
DIF: L1 REF: p. 58
DIF: L2 REF: p. 58

DIF: L2 REF: p. 58
DIF: L3
DIF: L2

DIF: L2
DIF: L1
DIF: L1

REF: p. 62
REF: p. 58

REF: p. 60
REF: p. 78
REF: p. 78

32.	ANS:	B	PTS:	1	DIF:	L1	REF:	p. 92
OBJ: 327-5 and 327-8								
33.	ANS:	A	PTS:	1	DIF:	L2	REF:	p. 84
OBJ: 327-7 and 327-8								
34.	ANS:	B	PTS:	1	DIF:	L1	REF:	p. 82
	OBJ:	212-4						
35.	ANS:	B	PTS:	1	DIF:	L3	REF:	p. 82
	OBJ:	327-5,	and 32					
36.	ANS:	C	PTS:	1	DIF:	L2	REF:	p. 88
	OBJ:	327-5,	and 32					
37.	ANS:	B	PTS:	1	DIF:	L2	REF:	p. 80
	OBJ:	327-2						
38.	ANS:	C	PTS:	1	DIF:	L2	REF:	p. 84
	OBJ:	327-7						
39.	ANS:	B	PTS:	1	DIF:	L2	REF:	p. 80
	OBJ:	327-2						
40.	ANS:		PTS:		DIF:	L2	REF:	p. 88
	OBJ:	327-5,	and 32					

41. (a) ANS:
(i)
(0.5) $\vec{a}=\frac{\text { Rise }}{\text { Run }}$
(0.5) $\vec{a}=\frac{-10 \mathrm{~m} / \mathrm{s}}{2.0 \mathrm{~s}}=-5 \mathrm{~m} / \mathrm{s}^{2}$
(ii)
(0.5) $\vec{d}=A_{1}+A_{2}+A_{3}$
(0.5) $\vec{d}=(2.0 \mathrm{~s})(10 \mathrm{~m} / \mathrm{s})+\frac{1}{2}(1.0 \mathrm{~s})(10 \mathrm{~m} / \mathrm{s})+\frac{1}{2}(2.0 \mathrm{~s})(-10 \mathrm{~m} / \mathrm{s})$
(0.5) $\vec{d}=20 m+5 m+(-10 m)$
(0.5) $\vec{d}=15 m$

PTS: 3 DIF: L2 REF: Pg 26 OBJ: 325-2
(b) ANS:

First Section of Journey (Uniform Motion)
$\mathrm{v}=41 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=1.6 \mathrm{~s}$
(0.5) $\mathrm{d}=\mathrm{vt}=(41 \mathrm{~m} / \mathrm{s})(1.6 \mathrm{~s})=66 \mathrm{~m}$

Second Section of Journey (Free-fall)

$$
\begin{aligned}
& v_{1}=41 \mathrm{~m} / \mathrm{s} \\
& \mathrm{a}=-9.80 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(0.5) $\quad \mathcal{V}_{2}=0.0 \mathrm{~m} / \mathrm{s}$ (maximum height)
(0.5) $\quad v_{2}^{2}=v_{1}^{2}+2 a d$

$$
d=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}
$$

(0.5) $d=\frac{\left(0.0 \mathrm{~m} / \mathrm{s}^{2}\right)-\left(41 \mathrm{~m} / \mathrm{s}^{2}\right)}{2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \quad$ Units incorrect

$$
d=\frac{0.0 m^{2} / \mathrm{s}^{2}-1681 \mathrm{~m}^{2} / \mathrm{s}^{2}}{-19.6 \mathrm{~m} / \mathrm{s}^{2}}
$$

(0.5) $\mathrm{d}=86 \mathrm{~m}$

Total Displacement
(0.5) $\quad d_{\text {totala }}=d_{1}+d_{2}$

$$
\begin{aligned}
& =66+86 \\
& =152 \\
& =150 \mathrm{~m}
\end{aligned}
$$

The total displacement for the toy rocket is 150 m .
PTS:
3 DIF:
L3 REF
Pg 28 OBJ: 325-2
(c) ANS:

(0.5) $\sin \theta=\frac{65}{350}=0.1857$
(0.5) $\quad \theta=\sin ^{-1} 0.1857=11^{0}$
(1) The pilot must head $\left[E 11^{\circ} \mathrm{M}\right]$
PTS:
3 DIF:
L2 REF
Pg 32 OBJ: 325-7
42. (a) ANS:
(1) $\vec{F}_{N E T x}=\vec{F}_{1 x}+\vec{F}_{2 x}=\left(-4.0 \times 10^{2} N\right)+\left(3.0 \times 10^{2} N\right) \cos (50)=-207.16 N$
(1) $\vec{F}_{\text {NETY }}=\vec{F}_{1 y}+\vec{F}_{2 y}=(0 N)+\left(3.0 \times 10^{2} N\right) \sin (50)=229.81 N$

Magnitude:
(1.0) $\quad F_{N E T}=\sqrt{(-207.16)^{2}+(229.81)^{2}}=\sqrt{95727.9}=309.4=310 \mathrm{~N}$ Direction:
(0.5) $\quad \theta=\tan ^{-1}\left(\frac{229.81}{207.16}\right)=47.97^{\circ}=48^{\circ}$
(0.5) The net force acting on the controller is $310 N\left[W 48^{\circ} N\right]$ or $\left[N 42^{\circ} W\right]$

PTS: 4 DIF: L2 REF: Pg 42 OBJ: 325-5
(b) ANS:
$p_{T_{\text {dgagr }}}=p_{T_{\text {ofir }}}$
(0.5) $p_{\text {athete }}+p_{\text {sled }}=p_{\text {both }}$
(0.5) $m_{a} v_{a}+m_{s} v_{s}=m_{b} v_{b}$
(1.0) $\quad(65)(3.5)+(12)(0)=(77)\left(v_{b}\right)$
(0.5) $227.5=77 v_{b}$
(0.5) $3.0 \mathrm{~m} / \mathrm{s}=\nu_{b}$
(1) Significant digits/Units

The velocity is $3.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$
PTS: 4
DIF: L2
REF: Pg 50
OBJ: 326-3
(c) ANS:
$a={ }_{m}^{\text {Fnet }}$
(1) $3=\frac{m(9.8)}{m+7}$
(1) $3(m+7)=9.8 m$
$3 m+21=9.8 m$
$21=9.8 m-3 m$
$\frac{21}{6.8}=m$
(1) $m=3.1 \mathrm{Kg}$

PTS: 3 DIF: L3 REF: $\operatorname{Pg} 46 \quad$ OBJ: 325-8
43. (a) ANS:
(1) i) $E_{t}=E_{k}+E_{p}$
$=1 / 2 m v^{2}+m g h$
$=0+(80.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(70.0 \mathrm{~m})$
(1) $\quad=5.49 \times 10^{4} \mathrm{~J}$ or 54.9 kJ

The total mechanical energy is 54.9 kJ .
(1) \quad ii) $E_{k}=E_{t}-E_{p}$
$1 / 2(80.0 \mathrm{~kg}) \mathrm{v}^{2}=5.49 \times 10^{4} \mathrm{~J}-(80.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(30.0 \mathrm{~m})$
$(40.0 \mathrm{~kg}) v^{2}=5.49 \times 10^{4} \mathrm{~J}-2.35 \times 10^{4} \mathrm{~J}$
$v^{2}=3.14 \times 10^{4} \mathrm{~J} / 40.0 \mathrm{~kg}$
(1) $v=28.0 \mathrm{~m} / \mathrm{s}$

The speed of the stunt man is $28.0 \mathrm{~m} / \mathrm{s}$ when he is 30.0 m from the ground.
PTS: 4 DIF: L2 REF: Pg $60 \quad$ OBJ: 326-1
(b) ANS:
(0.5)
$E_{e}=\frac{1}{2} k x^{2}=\frac{1}{2}(10800 \mathrm{~N} / \mathrm{m})(0.35 \mathrm{~m})^{2}$
0.5) $E_{e}=661.5 \mathrm{~J}$
efficiency $=\frac{\text { output }}{\text { input }} \times 100 \%$
(1.0) output $=(0.75)(661.5 \mathrm{~J})=496.125 \mathrm{~J}$
(0.5) output $=E_{g}=m \vec{g} h$
(0.5) $496.125 \mathrm{~J}=(45 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{h}$
(0.5) $h=\frac{496.125 \mathrm{~J}}{441 \mathrm{~N}}=1.125 \mathrm{~m}=1.1 \mathrm{~m}$ above the uncompressed trampoline

PTS: 3
DIF: L3
REF: Pg 66, Pg 68
OBJ: 326-1, 214-7, 326-8
(c) ANS:

```
    \(W=\Delta E_{k}\)
(0.5) \(\quad F d=\frac{1}{2} m v^{2}\)
(1.0) \(F=\frac{(1.2 \mathrm{~kg})(28 \mathrm{~m} / \mathrm{s})^{2}}{2(1.5 \mathrm{~m})}\)
(0.5) \(\quad F=313.6 N=310 N\)
```

PTS: 2 DIF: L2
REF: Pg 64
OBJ: 326-7
44. (a) ANS:
(2) $f=\frac{f_{o} v_{s}}{v_{s} \pm v_{o}}=910 \mathrm{~Hz}$
(1) Significant digits/Units

PTS: 3 DIF: L2 REF: $\operatorname{Pg} 88 \quad$ OBJ: 327-6
(b) ANS:
(2) i) diagrams will vary
(1) ii) The distance between each successive resonance is half a wavelength.
(1) $\quad \frac{1}{2} \lambda=0.12$
$\lambda=0.24 \mathrm{~m}$
(1) iii) $f=\frac{v}{\lambda}$

$$
\begin{aligned}
& f=\frac{344 \mathrm{~m} / \mathrm{s}}{0.24 \mathrm{~m}} \\
& f=1.4 \times 10^{3} \mathrm{~Hz}
\end{aligned}
$$

The frequency of the tuning fork is $1.4 \times 10^{3} \mathrm{~Hz}$.
PTS: 5
DIF: L2 REF: Pg 90
OBJ: 327-5
(c) (1) Diffraction will only occur if the wavelength of the wave is larger than the width of the barrier
(1) Sound has a larger wavelength than the barrier and will diffract (bend) around the corner of the building. You will hear the sound.
(1) Light has a smaller wavelength than the barrier and will not diffract around the corner of the building. You will not see the light.
PTS: 3
DIF: L3
REF: Pg 84
OBJ: 327-8

