Multiple Choice (PART I)

1.	A	21.	D
2.	A	22.	A
3.	C	23.	C
4.	A	24.	B
5.	C	25.	D
6.	A	26.	C
7.	D	27.	C
8.	B	28.	C
9.	B	29.	D
10.	A	30.	B
11.	D	31.	B
12.	A	32.	C
13.	D	33.	B
14.	A	34.	B
15.	C	35.	D
16.	A	36.	B
17.	D	37.	B
18.	D	38.	C
19.	B	39.	C
20.	C	40.	C

Part II- Constructed Response
 Total Value: 60\%

Answer ALL questions in the space provided. All necessary workings must be shown to receive full marks.

PART II
 Total Value: 60\%

Value

41. a) (i) At what time(s) was the object stopped?

1
(ii) Calculate the acceleration of the object between 2 s and 4 s .

1

$$
\begin{align*}
\text { Acceleration } & =\text { Slope }=\frac{\text { rise }}{\text { run }} \\
& =\frac{4 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}-2 \mathrm{~s}} \\
& =\frac{4 \mathrm{~m} / \mathrm{s}}{2 s}=2 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]
\end{align*}
$$

(iii) Calculate the displacement between 0 s and 4 s .

Displacement $=$ Area
$\operatorname{Disp}_{(0-2)}=\frac{1}{2} b h=\frac{1}{2}(2)(-2)=-2 m$
$\operatorname{Disp}_{(2-4)}=\frac{1}{2}(2)(4)=4 m$
1
$\operatorname{Disp}_{(\text {Total })}=2 m[E]$
b) A river flows at $2.5 \mathrm{~m} / \mathrm{s}$ [S]. A boater heads $3.5 \mathrm{~m} / \mathrm{s}$ [E]. Calculate the boater's resultant velocity with respect to the shore. Include a labelled vector diagram in your answer.

1 (diagram)

$$
{ }_{w} v_{g}=2.5 \frac{\mathrm{~m}}{\mathrm{~s}},{ }_{c} v_{w}=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\begin{equation*}
{ }_{c} v_{g}^{2}={ }_{c} v^{2}{ }_{w}+{ }_{w} v^{2}{ }_{g} \rightarrow{ }_{c} v^{2}{ }_{g}=(3.5 \mathrm{~m} / \mathrm{s})^{2}+(2.5 \mathrm{~m} / \mathrm{s})^{2} \tag{1}
\end{equation*}
$$

1
${ }_{c} v^{2}{ }_{g}=12.25+6.25=18.50 \rightarrow \quad{ }_{c} v_{g}=\sqrt{18.50}=4.3 \mathrm{~m} / \mathrm{s}$
$\tan \theta=\frac{3.5}{2.5}=1.4$
1
$\theta=54^{\circ}$

1
Resultant Velocity $=4.3 \mathrm{~m} / \mathrm{s}\left[S 54^{\circ} E\right]$ or $4.3 \mathrm{~m} / \mathrm{s}\left[E 36^{\circ} S\right]$.
(c)
$v_{1}=0, a=6.8 \mathrm{~m} / \mathrm{s}^{2}, t=3.1 \mathrm{~s}$
$v_{2}=v_{1}+a t=0+\left(6.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.1 \mathrm{~s})=21.08 \mathrm{~m} / \mathrm{s}$
The final velocity when accelerating is now the initial velocity when slowing down.
$v_{1}=21.08 \mathrm{~m} / \mathrm{s}, v_{2}=0 \mathrm{~m} / \mathrm{s}, \quad a=-7.6 \mathrm{~m} / \mathrm{s}^{2}, \Delta d=$?
$v_{2}^{2}=v_{1}^{2}+2 a \Delta d$
$\Delta d=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}=\frac{0-(21.08)^{2}}{2(-7.6)}=29 \mathrm{~m}$
The car travels 29 m before it stops so it will hit the garbage can.
42. a) Total Momentum Before=Total Momentum After

$$
\overrightarrow{P_{T}}=\overrightarrow{P_{P}}+\overrightarrow{P_{B}}
$$

$$
m_{T} \vec{v}_{T}=m_{P} \vec{v}_{P}+m_{b} \vec{v}_{b}
$$

$$
(80)(0)=65 \vec{v}_{P}+(15)(5.0)
$$

$$
0=65 \vec{v}_{P}+75
$$

$$
-75=65 \vec{v}_{P}
$$

$$
-1.2=\vec{v}_{P}
$$

b) A ship is being towed by two tugboats. Tugboat 1 exerts a force of $2.7 \times 10^{3} \mathrm{~N}\left[\mathrm{E} 20.0^{\circ} \mathrm{N}\right]$ and tugboat 2 exerts a force of $2.7 \times 10^{3} \mathrm{~N}\left[\mathrm{E} 20.0^{\circ} \mathrm{S}\right]$. Calculate the net force exerted by the tugboats on the ship.
$F_{x 1}=2.7 \times 10^{3} \mathrm{~N} \cdot \cos 20.0^{\circ}=2537 \mathrm{~N}$
$F_{y 1}=2.7 \times 10^{3} \mathrm{~N} \cdot \sin 20.0^{\circ}=923.5 \mathrm{~N}$

$F_{x 2}=2537 N$
$F_{y 2}=-923.5 \mathrm{~N}$

$F_{x(n e t)}=F_{x 1}+F_{x 2}=2537 N+2537 N=5074 N$
$F_{y(n e t)}=0$
The net force is $5074 \mathrm{~N}[\mathrm{E}]$ or $5.1 \times \mathbf{1 0}^{\mathbf{3}} \mathrm{N}$ using significant digits.
c) A dynamics cart is connected to a 0.20 kg hanging mass by a massless string over a frictionless pulley. The force of friction between the cart and the table is 0.36 N .

i) Calculate the magnitude of the acceleration of the system when the 0.20 kg mass is released.

$F_{g}=(0.20 \mathrm{~kg}) \times 9.8=1.96 \mathrm{~N}$
$m a=1.96-F_{T}$
$m a=1.60 \mathrm{~N}$
(1.60) $\mathrm{a}=1.60 \mathrm{~N}$
$a=1.0 \mathrm{~m} / \mathrm{s}^{2}$
ii) Calculate the tension in the string when the 0.20 kg mass is released.
(ii) $\quad F_{n e t}=F_{g}-F_{T}$

$$
\begin{aligned}
& F_{n e t}=1.96 \mathrm{~N}-0.36 \mathrm{~N} \\
& (0.20)(1.0)=1.96-F_{T} \\
& 0.20=1.96-F_{T} \\
& F_{T}=1.8 \mathrm{~N}
\end{aligned}
$$

* Other reasonable methods are also acceptable.
d) A 1200 kg car is travelling along a highway where the posted speed limit is $25 \mathrm{~m} / \mathrm{s}$. The driver fully applies the brakes and comes to a stop, leaving a skid mark 83 m long. The coefficient of friction between the tires and the road is 0.45 . Using physics, determine if the driver was speeding before he slammed on his brakes.

$$
\begin{aligned}
& F_{f}=\mu F_{N} \\
& m a=F_{f} \\
& F_{f}=(0.45)(1200)(9.8) \\
& a=-4.41 \mathrm{~m} / \mathrm{s}^{2} \\
& \\
& F_{n e t}=F_{f} \\
& F_{f}=\mu m g \\
& (1200) a=-5292 \\
& F_{f}=5292 \mathrm{~N} \\
& \\
& v_{2}^{2}=v_{1}^{2}+2 a \Delta d \\
& v_{1}^{2}=v_{2}^{2}-2 a \Delta d \\
& v_{1}^{2}=(0)-2(-4.41)(83) \\
& v_{1}^{2}=732.06 \\
& v_{1}=27 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The initial velocity was $27 \mathrm{~m} / \mathrm{s}$ so the car was speeding.

43. (a) A $5.00 \times 10^{2} \mathrm{~kg}$ roller coaster travels at a speed of $15.0 \mathrm{~m} / \mathrm{s}$ when at a height of 5.00 m above the ground (assume mechanical energy is conserved).
i) Calculate the kinetic energy at 5.00 m .
.
$E_{k}=\frac{1}{2} m v^{2}=\frac{1}{2}\left(5.00 \times 10^{2}\right)(15.0 \mathrm{~m} / \mathrm{s})^{2}=5.63 \times 10^{4} \mathrm{~J}$
ii) Calculate the gravitational potential energy at 5.00 m .
$E_{g}=m g h=\left(5.00 \times 10^{2}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~m})=2.45 \times 10^{4} \mathrm{~J}$
iii) Calculate the speed of the roller coaster when it is at a height of 10.0 m.
$E_{T}=E_{k}+E_{g}=56300 J+24500 J=80800 J$
$E_{k}=E_{T}-E_{g}=80800 J-(500)(9.8)(10.0)$

$$
=31500 \mathrm{~J}
$$

$E_{k}=\frac{1}{2} m v^{2}$
$v=\sqrt{\frac{2 E_{k}}{m}}=\sqrt{\frac{2 \times 31750}{500}}=11.3 \mathrm{~m} / \mathrm{s}$
b) A 605 kg race car accelerates from $20.0 \mathrm{~m} / \mathrm{s}$ to $60.0 \mathrm{~m} / \mathrm{s}$.
i) Calculate the work done during the acceleration.
$W=\Delta E=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}$
$W=\frac{1}{2}(605)(60.0)^{2}-\frac{1}{2}(605)(20.0)^{2}$
$W=1.09 \times 10^{6}-1.21 \times 10^{5}$
$W=9.68 \times 10^{5} \mathrm{~J}$
ii) If the car generates 582 kW of power, calculate the time it took to accelerate.
$t=\frac{W}{P}=\frac{9.68 \times 10^{5}}{582 \mathrm{~kW}}$
$t=\frac{9.68 \times 10^{5}}{582 \mathrm{~kW} \times \frac{1000 \mathrm{~W}}{1 \mathrm{~kW}}}$
$t=1.66 \mathrm{~s}$
c) A horizontal spring having a spring constant of $40.0 \mathrm{~N} / \mathrm{m}$ undergoes simple harmonic motion when a 1.20 kg mass stretches it 20.0 cm from its rest position. Calculate the speed of the mass when it is 5.00 cm from the rest position.
$E_{\text {Total }}=E_{e}=\frac{1}{2} k x^{2}=\frac{1}{2}(40.0)(0.200)^{2}=0.800 \mathrm{~J}$
At 5.00 cm ,
$E_{e}=\frac{1}{2} k x^{2}=\frac{1}{2}(40.0)(0.0500)^{2}=0.0500 \mathrm{~J}$
$E_{\text {Total }}=E_{e}+E_{k}$
$0.800 J=0.0500 J+E_{k}$
$E_{k}=0.750 \mathrm{~J}$
$E_{k}=\frac{1}{2} m v^{2}$
$0.750=\frac{1}{2}(1.20) v^{2}$
$v=1.12 \mathrm{~m} / \mathrm{s}$
44. a) A bass guitar string is 1.3 m long and vibrating in the third harmonic.
i) Sketch the standing wave pattern described above.

ii) Find the frequency if the speed of the wave is $181 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& L=1.5 \lambda \\
& 1.3=1.5 \lambda \\
& \lambda=0.87 \mathrm{~m} \\
& f=\frac{v}{\lambda}=\frac{181 \mathrm{~m} / \mathrm{s}}{0.87 \mathrm{~m}}=210 \mathrm{~Hz}
\end{aligned}
$$

b) A 310 Hz tuning fork is held over the mouth of a close-end air column. If the speed of sound is $352 \mathrm{~m} / \mathrm{s}$, determine the length of the air column which produces the second resonant sound.
$L=\frac{3}{4} \lambda$
$v=f \lambda$
$\lambda=\frac{v}{f}=\frac{352 \mathrm{~m} / \mathrm{s}}{310 \mathrm{hz}}=1.135 \mathrm{~m}$
$L=\frac{3}{4} \lambda=\frac{3}{4}(1.135)=0.85 \mathrm{~m}$
c) An ambulance siren emits a frequency of 440 Hz . If the air temperature is $22^{\circ} \mathrm{C}$, calculate the frequency heard by an observer if the ambulance is coming toward him at $26 \mathrm{~m} / \mathrm{s}$.
$v=332+0.6 T=332+0.6(22)=345.2 \mathrm{~m} / \mathrm{s}$
$f=\frac{f_{0} v_{s}}{v_{s}-v_{0}}=\frac{(440 \mathrm{~Hz})(345.2 \mathrm{~m} / \mathrm{s})}{345.2 \mathrm{~m} / \mathrm{s}-26 \mathrm{~m} / \mathrm{s}}$
$f=\frac{151888}{319.2}=475.8 \mathrm{~Hz}$
$f=480 \mathrm{~Hz}$
d) A light with a wavelength of $5.50 \times 10^{-7} \mathrm{~m}$ is shone through two slits which are $3.0 \times 10^{-6} \mathrm{~m}$ apart. Calculate the angle at which the first order maxima occur.
$n \lambda=d \sin d_{n}$
(1) $\left(5.50 \times 10^{-7}\right)=\left(3.0 \times 10^{-6}\right)(\sin \theta)$
$\sin \theta=\frac{\left(5.50 \times 10^{-7}\right)}{\left(3.0 \times 10^{-6}\right)}=0.1833$
$\theta=11^{\circ}$
e) A student is standing at the edge of a pool that is 2.3 m deep. A set of keys is at the bottom of the pool, 3.2 m from the wall. The index of refraction for air is 1.0 and for water is 1.3 . What is the angle of refraction in air?
$\tan \theta=\frac{1.2}{2.3}=0.5217$
$\theta=27.6^{\circ}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$1.3(\sin 27.6)=1.0\left(\sin \theta_{2}\right)$
$\theta_{2}=37^{\circ}$

