Question	Unit	Answer	Level	SCO	Pg.#
1	1	D	1	325-5	24
2	1	A 2 325-5		325-5	24
3	1	D	1	325-2	26
4 lab	1	D	1	325-2	26
5	1	С	1	325-2	28
6	1	С	3	325-2	26
7	1	В	2	325-2	28
8	1	D	2	325-7	34
9	1	В	2	325-8	34
10	2	D	1	325-8	42
11	2	D	1	325-8	44
12	2	A	3	325-8	44
13	2	A	2	325-5	42
14	2	В	2	325-8	48
15	2	С	2	325-5	42
16 lab	2	С	2	325-8	44
17	2	В	2	325-8	46
18	2	D	1	326-3	52
19	2	С	1	326-3	52
20	2	С	2	326-3	52
21	3	A	2	325-9	58
22	3	В	2	325-10	58
23	3	С	2	326-1	60
24	3	D	1	326-1	60
25	3	В	1	326-1	62
26	3	С	C 1 32		62
27	3	A	2	326-1	62
28	3	D	3	326-1	66
29	3	В	2	326-8	68
30	4	В	1	212-7, 327-1	78
31	4	С	1	212-7, 327-1	78
32	4	С	1	212-7, 327-1	80

33	4	В	2	327-7, 327-8	84
34	4	D	3	327-7, 327-8	84
35	4	A	2	327-7, 327-8	84
36	4	D	2	327-2	80
37	4	С	2	327-5, 327-6, 327-7	88
38	4	A	2	212-7, 327-5, 327-6, 327-7	90
39 lab	4	В	2	327-5, 327-8	92
40	4	В	1	327-5, 327-8	92

Unit 1: Kinematics Unit 2: Dynamics

Unit 3: Work and Energy

Unit 4: Waves

1: Knowledge/Comprehension Level 2: Application Analysis/Synthesis/Evaluation

PART II Total Value: 40 marks

Answer **ALL** questions in the space provided. *Show all your workings.*

Value

41. (a) Use the graph to answer the questions below.

(b) A car is travelling at a constant velocity of 28 m/s when the driver sees a moose 75 m ahead. The brakes are then applied, causing the car to accelerate at -6.4 m/s². What was the maximum reaction time the driver had to apply the brakes and avoid hitting the moose?

(Note: Space on the page has been left in the event you would like to include a diagram.)

Distance needed to stop:

$$2\vec{a}\vec{d} = \vec{v}_2^2 - \vec{v}_1^2$$
 (0.5 marks)
 $d = \frac{0^2 - 28^2}{2(-6.4)} = 61.25$ m (1 mark)

Distance remaining for driver reaction:

- 75-61.25 = 13.75 m (0.5 marks) t = $\frac{d}{v} = \frac{13.75}{28} = 0.49$ s (1 mark)
- 42. (a) Two masses are connected by a massless string over a frictionless pulley. There is a frictional force of 8.5 N acting on the 5.0 kg cart.

3

3

(i) Calculate the acceleration of the system when the 4.0kg mass is released.

System:

$$\vec{F}_{NET} = \vec{F}_g + \vec{F}_f$$
 (1 mark)
 $m_T \vec{a} = m_2 \vec{g} + \vec{F}_f$ (0.5 marks for using total mass of system)
(5.0 + 4.0) $\vec{a} = (4.0)(9.80) + (-8.5)$ (0.5 marks)
 $\vec{a} = \frac{30.7}{9.0} = 3.4 \text{ m/s}^2$ (1 mark)

(ii) Calculate the tension in the string when the 4.0kg mass is released.

Isolate the mass on the table:

 $\vec{F}_{NET1} = \vec{T} + \vec{F}_{f}$ (0.5 marks) $m_1 \vec{a} = \vec{T} + \vec{F}_{f}$ (0.5 marks for correct mass) (5.0)(3.4) = $\vec{T} + (-8.5)$ (0.5 marks) $\vec{T} = 26$ N (0.5 marks)

(b) A 120 kg ATV moving at 15 m/s collides with a stationary 35 kg barbeque. If they stick together on impact, what is their common final velocity?

 $\vec{p} = \vec{p}'$ $m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}'_{12} \quad (1 \text{ mark})$ $(120)(15) + (35)(0) = (120 + 35) \vec{v}'_{12} \quad (1 \text{ mark})$ $1800 = 155 \vec{v}'_{12}$ $\vec{v}'_{12} = \frac{1800}{155} = 12 \text{ m/s} \quad (1 \text{ mark})$

(c) In the "Wreckhouse" area, the winds can cause windows to break with gusts up to 180 km/h. Calculate the force on a window if 40.0 kg of air moving at 180 km/h strikes a window over a contact time of 0.20 s. Assume the air stops moving when it hits the glass.

 $180 \text{ km/h} = 180 \div 3.6 = 50 \text{ m/s} \quad (1 \text{ mark})$ $\vec{F}t = m\Delta \vec{v} \quad (0.5 \text{ marks})$ $\vec{F}(0.20) = (40.0)(0 - 50) \quad (0.5 \text{ marks})$ $\vec{F} = -10000 = -1.0 \times 10^4 \text{ N} \quad (1 \text{ mark})$

3 43. (a) Using principles of Physics, explain which one of these Olympic weight lifters is doing the most work.

Lifter A raises a 50 kg mass 2m vertically from the floor.

Lifter B holds a 50 kg mass at shoulder height and walks 2m forward at a constant velocity.

Lifter A does more work. (1 mark)

This is because a force is applied to lift the mass and the mass moves in the direction of the applied force. (1 mark)

Lifter B actually does zero work because the mass does not move in the direction of the force or a component of the force. (1 mark)

3

3

3

3

(b) A spring (k = 125 N/m) is used to launch a 0.15 kg toy straight upwards from the ground. If the spring is compressed 0.080 m, what is the maximum height reached by the toy?

$$E = E' \quad (0.5 \text{ marks})$$

$$E_{e} = E_{g} \quad (0.5 \text{ marks})$$

$$\frac{1}{2} \text{ kx}^{2} = \text{mgh}$$

$$\frac{1}{2} (125)(0.080)^{2} = (0.15)(9.80)\text{h} \quad (1 \text{ mark})$$

$$0.4 = 1.47\text{h}$$

$$h = \frac{0.4}{1.47} = 0.27 \text{ m} \quad (1 \text{ mark})$$

(c) A light bulb has a power input of 40 W and is only 4.0% efficient. What is the light energy output from the light bulb in a time of 3600s?

$$P_{in} = \frac{W_{in}}{t} \quad (0.5 \text{ marks})$$

$$40 = \frac{W_{in}}{3600}$$

$$W_{in} = 144000 \text{ J} \quad (0.5 \text{ marks})$$

efficiency =
$$\frac{W_{out}}{W_{in}} \times 100\%$$
 (0.5 marks)
 $4.0\% = \frac{W_{out}}{144000} \times 100\%$ (0.5 marks)
 $0.040 = \frac{W_{out}}{144000}$
 $W_{out} = 5760 = 5800 \text{ J}$ (1 mark)

44. (a) Use the diagram below to answer the questions.

(i) When person A calls for help, how long will it take her to hear the echo from the nearest cliff if the speed of sound is 338 m/s?

d =
$$150 \times 2 = 300$$
 m (1 mark)
t = $\frac{d}{v} = \frac{300}{338} = 0.89$ s (1 mark)

2

(ii) B and C hear a call for help from A. By what factor does the intensity of the sound heard by B differ from the intensity of the sound heard by C?

Intensity $\alpha \frac{1}{r^2}$ (0.5 marks) Person B is $\frac{450}{150} = 3$ times the distance of person C (0.5 marks) $\frac{1}{3^2} = \frac{1}{9}$ (0.5 marks) Person B hears the call for help with $\frac{1}{9}$ the intensity of person C. (0.5 marks)

(b) A student is planning to conduct an experiment to verify Snell's Law.

(i) As a pre-lab exercise, he attempted to calculate the angle of refraction in air (n = 1.00) using an angle of incidence in water (n = 1.33) of 52°. Determine if the incident ray reflected or refracted.

The light will reflect (total internal reflection) if the angle exceeds the critical angle. (1 mark) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 1.33 $\sin \theta_1 = 1.00 \sin 90^\circ$ (0.5 marks) $\sin \theta_1 = 0.7519$ $\theta_1 = \sin^{-1} 0.7519 = 49^\circ$ (0.5 marks) Since the incident angle (52°) is greater than the critical angle, the light reflects. (1 mark)

(ii) On the diagram below, sketch the resulting ray when the lab was conducted.

3

1

(c) A 440 Hz tuning fork is held over an air column that is open at one end. If the temperature is 19° C, calculate the length of the air column that produces the second resonant sound.

$$v_{sound} = 332 + 0.6T$$

 $v_{sound} = 332 + 0.6(19^{\circ}) = 343.4 \text{ m/s}$ (1 mark)

$$\lambda = \frac{v}{f} = \frac{343.4}{440} = 0.780 \text{ m}$$
 (1 mark)

$$L = \frac{3}{4}\lambda = \frac{3}{4}(0.780) = 0.59 \text{ m} \quad (1 \text{ mark})$$

Question			Unit	Level	Marks	SCO	Pg. #
41	A	i	1	2	2	325-2	26
		ii	1	2	2	325-2	26
		iii	1	2	1	325-2	26
		iv	1	2	1	325-2	26
	b(STSE)		1	3	3	325-2	30
42	а	i	2	2	3	325-8	48
		ii	2	2	2	325-8	48
	b(STSE)		2	2	3	326-3	54
	c(STSE)		2	3	3	326-3	52
43	а		3	3	3	325-9	58
	b		3	2	3	326-1	66
	с		3	2	3	325-10, 326- 8	68
44	а	i	4	2	2	327-5, 327- 6, 327-7	88
		ii	4	2	2	327-5, 327- 6, 327-7	88
	b	i	4	3	3	327-7, 327-8	84
		ii	4	2	1		84
	c(lab)		4	2	3	327-5, 327-8	92

Unit 1: Kinematics Unit 2: Dynamics Unit 3: Work and Energy Unit 4: Waves 1: Knowledge/Comprehension Level 2: Application Analysis/Synthesis/Evaluation