Question	Unit	Answer	Level	SCO	Pg.\#
1	1	D	1	325-5	24
2	1	A	2	325-5	24
3	1	D	1	325-2	26
4 lab	1	D	1	325-2	26
5	1	C	1	325-2	28
6	1	C	3	325-2	26
7	1	B	2	325-2	28
8	1	D	2	325-7	34
9	1	B	2	325-8	34
10	2	D	1	325-8	42
11	2	D	1	325-8	44
12	2	A	3	325-8	44
13	2	A	2	325-5	42
14	2	B	2	325-8	48
15	2	C	2	325-5	42
16 lab	2	C	2	325-8	44
17	2	B	2	325-8	46
18	2	D	1	326-3	52
19	2	C	1	326-3	52
20	2	C	2	326-3	52
21	3	A	2	325-9	58
22	3	B	2	325-10	58
23	3	C	2	326-1	60
24	3	D	1	326-1	60
25	3	B	1	326-1	62
26	3	C	1	327-4	62
27	3	A	2	326-1	62
28	3	D	3	326-1	66
29	3	B	2	326-8	68
30	4	B	1	212-7, 327-1	78
31	4	C	1	212-7, 327-1	78
32	4	C	1	212-7, 327-1	80

33	4	B	2	$327-7,327-8$	84
34	4	D	3	$327-7,327-8$	84
35	4	A	2	$327-7,327-8$	84
36	4	D	2	$327-2$	80
37	4	C	2	$327-5,327-6$, $327-7$	88
38	4	A	2	$212-7,327-5$, $327-6,327-7$	90
39 lab	4	B	2	$327-5,327-8$	92
40	4	B	1	$327-5,327-8$	92

Unit 1: Kinematics
Unit 2: Dynamics
Unit 3: Work and Energy
Unit 4: Waves

1: Knowledge/Comprehension
Level 2: Application
Analysis/Synthesis/Evaluation

PART II
 Total Value: 40 marks

Answer ALL questions in the space provided. Show all your workings.

Value
41. (a) Use the graph to answer the questions below.

(i) Calculate the acceleration at 10 s .
$\overrightarrow{\mathrm{a}}=$ slope $=\frac{-6-6 \mathrm{~m} / \mathrm{s}}{11-7 \mathrm{~s}}=-3.0 \mathrm{~m} / \mathrm{s}$
0.5 marks for recognizing $\mathrm{a}=$ slope

1 mark for calculation/answer
0.5 marks for - sign in answer
(ii) Calculate the displacement from 0 s to 4 s .
$\mathrm{d}=\operatorname{area}=(1 \times \mathrm{w})+\left(\frac{1}{2} \mathrm{bh}\right)=(2 \times 4)+\left(\frac{1}{2} \times 4 \times 4\right)=16 \mathrm{~m}$
0.5 marks for recognizing $\mathrm{d}=$ area
0.5 marks for calculating each area (rectangle and triangle)
0.5 marks for correct answer
(iii) At what time is the object at rest?

Stopped at $\mathrm{t}=9 \mathrm{~s}(\mathrm{v}=0 \mathrm{~m} / \mathrm{s})$
0.5 marks for recognizing $\mathrm{v}=0$ when line crosses x -axis
0.5 marks for correct answer
(iv) During which time interval is the object travelling at a constant velocity?

Constant velocity from $t=4-7 \mathrm{~s}$ (Line is horizontal meaning $\mathrm{a}=0$)
0.5 marks for recognizing velocity is constant when graph is horizontal line
0.5 marks for correct answer
(b) A car is travelling at a constant velocity of $28 \mathrm{~m} / \mathrm{s}$ when the driver sees a moose 75 m ahead. The brakes are then applied, causing the car to accelerate at $-6.4 \mathrm{~m} / \mathrm{s}^{2}$. What was the maximum reaction time the driver had to apply the brakes and avoid hitting the moose?
(Note: Space on the page has been left in the event you would like to include a diagram.)

Distance needed to stop:
$2 \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{v}}_{2}{ }^{2}-\overrightarrow{\mathrm{v}}_{1}{ }^{2} \quad$ (0.5 marks)
$\mathrm{d}=\frac{0^{2}-28^{2}}{2(-6.4)}=61.25 \mathrm{~m} \quad(1 \mathrm{mark})$
Distance remaining for driver reaction:
$75-61.25=13.75 \mathrm{~m} \quad$ (0.5 marks)
$\mathrm{t}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{13.75}{28}=0.49 \mathrm{~s} \quad(1 \mathrm{mark})$
42. (a) Two masses are connected by a massless string over a frictionless pulley. There is a frictional force of 8.5 N acting on the 5.0 kg cart.

(i) Calculate the acceleration of the system when the 4.0 kg mass is released.

System:

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\mathrm{NET}}=\overrightarrow{\mathrm{F}}_{\mathrm{g}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}} \quad(1 \text { mark }) \\
& \mathrm{m}_{\mathrm{T}} \overrightarrow{\mathrm{a}}=\mathrm{m}_{2} \overrightarrow{\mathrm{~g}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}} \quad(0.5 \text { marks for using total mass of system }) \\
& (5.0+4.0) \overrightarrow{\mathrm{a}}=(4.0)(9.80)+(-8.5) \quad(0.5 \text { marks }) \\
& \overrightarrow{\mathrm{a}}=\frac{30.7}{9.0}=3.4 \mathrm{~m} / \mathrm{s}^{2} \quad(1 \text { mark })
\end{aligned}
$$

(ii) Calculate the tension in the string when the 4.0 kg mass is released.

Isolate the mass on the table:

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\mathrm{NET1}}=\overrightarrow{\mathrm{T}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}} \quad(0.5 \text { marks }) \\
& \mathrm{m}_{1} \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{T}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}} \quad(0.5 \text { marks for correct mass }) \\
& (5.0)(3.4)=\overrightarrow{\mathrm{T}}+(-8.5) \quad(0.5 \text { marks }) \\
& \overrightarrow{\mathrm{T}}=26 \mathrm{~N} \quad(0.5 \text { marks })
\end{aligned}
$$

43. (a) Using principles of Physics, explain which one of these Olympic weight lifters is doing the most work.

Lifter A raises a 50 kg mass 2 m vertically from the floor.
Lifter B holds a 50 kg mass at shoulder height and walks 2 m forward at a constant velocity.

Lifter A does more work. (1 mark)
This is because a force is applied to lift the mass and the mass moves in the direction of the applied force. (1 mark)

Lifter B actually does zero work because the mass does not move in the direction of the force or a component of the force. (1 mark)
(b) A spring $(\mathrm{k}=125 \mathrm{~N} / \mathrm{m})$ is used to launch a 0.15 kg toy straight upwards from the ground. If the spring is compressed 0.080 m , what is the maximum height reached by the toy?
$\mathrm{E}=\mathrm{E}^{\prime} \quad$ (0.5 marks)
$\mathrm{E}_{\mathrm{e}}=\mathrm{E}_{\mathrm{g}} \quad(0.5$ marks $)$
$\frac{1}{2} \mathrm{kx}^{2}=\mathrm{mgh}$
$\frac{1}{2}(125)(0.080)^{2}=(0.15)(9.80) \mathrm{h} \quad(1$ mark $)$
$0.4=1.47 \mathrm{~h}$
$\mathrm{h}=\frac{0.4}{1.47}=0.27 \mathrm{~m} \quad(1 \mathrm{mark})$
(c) A light bulb has a power input of 40 W and is only 4.0% efficient. What is the light energy output from the light bulb in a time of 3600s?
$\mathrm{P}_{\text {in }}=\frac{\mathrm{W}_{\text {in }}}{\mathrm{t}} \quad(0.5 \mathrm{marks})$
$40=\frac{\mathrm{W}_{\text {in }}}{3600}$
$\mathrm{W}_{\mathrm{in}}=144000 \mathrm{~J} \quad(0.5 \mathrm{marks})$
efficiency $=\frac{\mathrm{W}_{\text {out }}}{\mathrm{W}_{\text {in }}} \times 100 \% \quad(0.5$ marks $)$
$4.0 \%=\frac{\mathrm{W}_{\text {out }}}{144000} \times 100 \% \quad(0.5 \mathrm{marks})$
$0.040=\frac{\mathrm{W}_{\text {out }}}{144000}$
$\mathrm{W}_{\text {out }}=5760=5800 \mathrm{~J} \quad$ (1 mark)
44. (a) Use the diagram below to answer the questions.

2
(i) When person A calls for help, how long will it take her to hear the echo from the nearest cliff if the speed of sound is $338 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \mathrm{d}=150 \times 2=300 \mathrm{~m} \quad(1 \mathrm{mark}) \\
& \mathrm{t}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{300}{338}=0.89 \mathrm{~s} \quad(1 \mathrm{mark})
\end{aligned}
$$

(ii) B and C hear a call for help from A . By what factor does the intensity of the sound heard by B differ from the intensity of the sound heard by C ?

Intensity $\alpha \frac{1}{\mathrm{r}^{2}} \quad(0.5 \mathrm{marks})$
Person B is $\frac{450}{150}=3$ times the distance of person C (0.5 marks)
$\frac{1}{3^{2}}=\frac{1}{9} \quad(0.5 \mathrm{marks})$
Person B hears the call for help with $\frac{1}{9}$ the intensity of person C. (0.5 marks)
(b) A student is planning to conduct an experiment to verify Snell's Law.
(i) As a pre-lab exercise, he attempted to calculate the angle of refraction in air $(\mathrm{n}=1.00)$ using an angle of incidence in water $(\mathrm{n}=1.33)$ of 52°. Determine if the incident ray reflected or refracted.

The light will reflect (total internal reflection) if the angle exceeds the critical angle. (1 mark)
$\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$
$1.33 \sin \theta_{1}=1.00 \sin 90^{\circ} \quad$ (0.5 marks)
$\sin \theta_{1}=0.7519$
$\theta_{1}=\sin ^{-1} 0.7519=49^{\circ} \quad(0.5$ marks $)$
Since the incident angle (52°) is greater than the critical angle, the light reflects. (1 mark)
(ii) On the diagram below, sketch the resulting ray when the lab was conducted.

(c) A 440 Hz tuning fork is held over an air column that is open at one end. If the temperature is $19^{\circ} \mathrm{C}$, calculate the length of the air column that produces the second resonant sound.

$$
\begin{aligned}
& \mathrm{v}_{\text {sound }}=332+0.6 \mathrm{~T} \\
& \mathrm{v}_{\text {sound }}=332+0.6\left(19^{\circ}\right)=343.4 \mathrm{~m} / \mathrm{s} \quad(1 \mathrm{mark}) \\
& \lambda=\frac{\mathrm{v}}{\mathrm{f}}=\frac{343.4}{440}=0.780 \mathrm{~m} \quad(1 \mathrm{mark}) \\
& \mathrm{L}=\frac{3}{4} \lambda=\frac{3}{4}(0.780)=0.59 \mathrm{~m} \quad(1 \mathrm{mark})
\end{aligned}
$$

Question			Unit	Level	Marks	SCO	Pg. \#
41	A	i	1	2	2	325-2	26
		ii	1	2	2	325-2	26
		iii	1	2	1	325-2	26
		iv	1	2	1	325-2	26
	b(STSE)		1	3	3	325-2	30
42	a	i	2	2	3	325-8	48
		ii	2	2	2	325-8	48
	b(STSE)		2	2	3	326-3	54
	c(STSE)		2	3	3	326-3	52
43	a		3	3	3	325-9	58
	b		3	2	3	326-1	66
	C		3	2	3	$\begin{aligned} & 325-10,326- \\ & 8 \end{aligned}$	68
44	a	i	4	2	2	$\begin{aligned} & 327-5,327- \\ & 6,327-7 \end{aligned}$	88
		ii	4	2	2	$\begin{aligned} & 327-5,327- \\ & 6,327-7 \end{aligned}$	88
	b	i	4	3	3	327-7, 327-8	84
		ii	4	2	1		84
	c(lab)		4	2	3	327-5, 327-8	92

Unit 1: Kinematics
Unit 2: Dynamics
Unit 3: Work and Energy

1: Knowledge/Comprehension
Level 2: Application
Analysis/Synthesis/Evaluation

